Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.299
Filtrar
1.
Sci Rep ; 14(1): 8178, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589416

RESUMO

The DP2 receptor is a G-protein coupled receptor involved in allergic inflammation and is the target of recently developed antagonists already being tested in clinics. To get insights into DP2 receptor dynamics and to study its pharmacology on the level of the receptor, we constructed a fluorescence resonance energy transfer-based conformation sensor. The sensor reflects the selectivity profile of the DP2 receptor-wt and is suited for screening of agonists and antagonists due to its robust response. Furthermore, the sensor enables the direct measurement of DP2 receptor dynamics in real-time and revealed markedly distinct on- and off-rates of prostaglandin D2 between DP2 and DP1 receptors, suggesting a different mechanism of ligand receptor interaction.


Assuntos
Inflamação , Prostaglandina D2 , Humanos , Prostaglandina D2/farmacologia , Receptores de Prostaglandina
2.
Eur J Pharmacol ; 956: 175963, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543159

RESUMO

Prostaglandin (PG) D2, a commonly considered vasodilator through D prostanoid receptor-1 (DP1), might also evoke vasoconstriction via acting on the thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2; TP) and/or E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2; EP3). This study aimed to test the above hypothesis in the mouse renal vascular bed (main renal arteries and perfused kidneys) and/or mesenteric resistance arteries and determine how the vasoconstrictor mechanism influences the overall PGD2 effect on systemic blood pressure under in vivo conditions. Experiments were performed on control wild-type (WT) mice and mice with deficiencies in TP (TP-/-) and/or EP3 (EP3-/-). Here we show that PGD2 indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however not only reduced by TP-/- or EP3-/-, but also reversed by TP-/-/EP3-/- in some of the above tissues (mesenteric resistance arteries or perfused kidneys) to dilator reactions that were reduced by non-selective DP antagonism. A slight or mild pressor response was also observed with PGD2 under in vivo conditions, and this was again reversed to a depressor response in TP-/- or TP-/-/EP3-/- mice. Non-selective DP antagonism reduced the PGD2-evoked depressor response in TP-/-/EP3-/- mice as well. These results thus demonstrate that like other PGs, PGD2 activates TP and/or EP3 to evoke vasoconstrictor activities, which can outweigh its concurrent vasodepressor activity mediated mainly through DP1, and hence result in a pressor response, although the response might only be of a slight or mild extent.


Assuntos
Prostaglandinas , Vasoconstritores , Camundongos , Animais , Tromboxanos , Receptores de Tromboxanos , Receptores de Prostaglandina E Subtipo EP3 , Receptores de Prostaglandina , Prostaglandina D2/farmacologia
3.
Int Immunopharmacol ; 121: 110491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329807

RESUMO

15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potential to alleviate liver inflammation in chronic injury but was less studied in acute injury. Acute liver injury was associated with elevated macrophage migration inhibitory factor (MIF) levels in damaged hepatocytes. This study aimed to investigate the regulatory mechanism of hepatocyte-derived MIF by 15d-PGJ2 and its subsequent impact on acute liver injury. In vivo, mouse models were established by carbon tetrachloride (CCl4) intraperitoneal injection, with or without 15d-PGJ2 administration. 15d-PGJ2 treatment reduced the necrotic areas induced by CCl4. In the same mouse model constructed using enhanced green fluorescent protein (EGFP)-labeled bone marrow (BM) chimeric mice, 15d-PGJ2 reduced CCl4 induced BM-derived macrophage (BMM, EGFP+F4/80+) infiltration and inflammatory cytokine expression. Additionally, 15d-PGJ2 down-regulated liver and serum MIF levels; liver MIF expression was positively correlated with BMM percentage and inflammatory cytokine expression. In vitro, 15d-PGJ2 inhibited Mif expression in hepatocytes. In primary hepatocytes, reactive oxygen species inhibitor (NAC) showed no effect on MIF inhibition by 15d-PGJ2; PPARγ inhibitor (GW9662) abolished 15d-PGJ2 suppressed MIF expression and antagonists (troglitazone, ciglitazone) mimicked its function. In Pparg silenced AML12 cells, the suppression of MIF by 15d-PGJ2 was weakened; 15d-PGJ2 promoted PPARγ activation in AML 12 cells and primary hepatocytes. Furthermore, the conditioned medium of recombinant MIF- and lipopolysaccharide-treated AML12 respectively promoted BMM migration and inflammatory cytokine expression. Conditioned medium of 15d-PGJ2- or siMif-treated injured AML12 suppressed these effects. Collectively, 15d-PGJ2 activated PPARγ to suppress MIF expression in injured hepatocytes, reducing BMM infiltration and pro-inflammatory activation, ultimately alleviating acute liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fatores Inibidores da Migração de Macrófagos , Prostaglandina D2 , Animais , Camundongos , Meios de Cultivo Condicionados , Hepatócitos , Fígado , Fatores Inibidores da Migração de Macrófagos/metabolismo , PPAR gama , Prostaglandina D2/uso terapêutico , Prostaglandina D2/farmacologia , Prostaglandinas , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
4.
Transl Vis Sci Technol ; 12(5): 5, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37133840

RESUMO

Purpose: The purpose of this study was to investigate the impact of prostaglandin D2 (PGD2) receptor 2 (DP2) on choroidal neovascularization (CNV) formation in mice. Methods: Using a laser-induced CNV model, the CNV size of wild-type (WT) mice treated with DP2 antagonist (CAY10471 or OC000459) was compared with that of untreated mice. Vascular endothelial growth factor (VEGF) and MCP-1 levels were also compared between the two groups. Similar experiments were performed comparing DP2 knockout (DP2KO) mice with WT mice (8 and 56 weeks old). The number of infiltrating macrophages to laser spots was also compared between the WT and DP2KO mice. We administered a DP2 antagonist to 15-methyl PGD2 (a DP2 agonist)-stimulated ARPE-19 cells and measured VEGF secretion by enzyme-linked immunosorbent assay. Tube formation assay was performed on human umbilical vein endothelial cells with or without a DP2 antagonist. Results: CNV sizes were significantly smaller in mice treated with CAY10471 or OC000459 than in those treated with vehicle. Similarly, the CNV size of DP2KO mice was significantly smaller than that of WT mice. The number of macrophages at laser spots in DP2KO mice was significantly lower than that in WT mice. The VEGF concentration of lasered DP2KO mice's eyes was significantly lower than that of lasered WT mice' eyes. DP2 antagonist treatment suppressed VEGF secretion in ARPE-19 cells under 15-methyl PGD2 stimulation. The tube formation assay suggested that lumen formation was inhibited by a DP2 antagonist. Conclusions: DP2 blockade attenuated choroidal neovascularization. Translational Relevance: Drugs targeting DP2 are potentially a novel treatment for age-related macular degeneration.


Assuntos
Neovascularização de Coroide , Fator A de Crescimento do Endotélio Vascular , Camundongos , Humanos , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Lasers , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Knockout
5.
ACS Chem Neurosci ; 14(6): 1063-1070, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36847485

RESUMO

Prostaglandin D2 (PGD2) is one of the most potent endogenous sleep-promoting molecules. However, the cellular and molecular mechanisms of the PGD2-induced activation of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO), the major nonrapid eye movement (NREM)-sleep center, still remains unclear. We here show that PGD2 receptors (DP1) are not only expressed in the leptomeninges but also in astrocytes from the VLPO. We further demonstrate, by performing real-time measurements of extracellular adenosine using purine enzymatic biosensors in the VLPO, that PGD2 application causes a 40% increase in adenosine level, via an astroglial release. Measurements of vasodilatory responses and electrophysiological recordings finally reveal that, in response to PGD2 application, adenosine release induces an A2AR-mediated dilatation of blood vessels and activation of VLPO sleep-promoting neurons. Altogether, our results unravel the PGD2 signaling pathway in the VLPO, controlling local blood flow and sleep-promoting neurons, via astrocyte-derived adenosine.


Assuntos
Astrócitos , Prostaglandinas , Astrócitos/metabolismo , Adenosina/metabolismo , Prostaglandina D2/farmacologia , Prostaglandina D2/fisiologia , Sono , Neurônios/metabolismo
6.
Inflamm Res ; 72(2): 171-180, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36371490

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent nuclear receptor and highly expressed in human and rodent lungs. 15-Deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2), known for cyclopentenone prostaglandin, is the endogenous ligand of PPARγ. However, the associations among PPARγ, 15d-PGJ2 and chronic obstructive pulmonary disease (COPD) were unclear. METHODS: All 130 fasting blood samples and 40 lung specimens were obtained from COPD patients and control subjects. Serum 15d-PGJ2 was detected by ELISA. The expressions of oxidative stress indicators were measured using western blotting and PPARγ nuclei were evaluated with immunohistochemistry in lungs. The associations among serum 15d-PGJ2, pulmonary PPARγ and oxidative stress indicators, and COPD were estimated. RESULTS: Serum 15d-PGJ2 was reduced in COPD patients compared with healthy volunteers. Linear and logistic regression analysis indicated that serum 15d-PGJ2 was positively associated with pulmonary function in COPD patients. In addition, PPARγ-positive nuclei were reduced and oxidative stress indicators, included HO-1 and NOX-4, were increased in lungs of COPD patients. Further correlative analysis suggested that pulmonary function parameters was positively correlated with serum 15d-PGJ2 and pulmonary PPARγ-positive nuclei, inversely related to oxidative stress indicators in lungs of COPD patients. Pretreatment with 15d-PGJ2 obviously attenuated TNFα-induced oxidative stress in BEAS-2B cells. CONCLUSIONS: Serum 15d-PGJ2 and pulmonary PPARγ are reduced, and oxidative stress is elevated in COPD patients. Serum 15d-PGJ2 is inversely associated with oxidative stress in COPD patients.


Assuntos
PPAR gama , Doença Pulmonar Obstrutiva Crônica , Humanos , PPAR gama/metabolismo , Ligantes , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Estresse Oxidativo
7.
Oncotarget ; 13: 1380-1396, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36580536

RESUMO

Melanoma is the deadliest form of skin cancer in the US. Although immunotherapeutic checkpoint inhibitors and small-molecule kinase inhibitors have dramatically increased the survival of patients with melanoma, new or optimized therapeutic approaches are still needed to improve outcomes. 15-deoxy-Δ12,14-prostamide J2 (15d-PMJ2) is an investigational small-molecule that induces ER stress-mediated apoptosis selectively in tumor cells. Additionally, 15d-PMJ2 reduces melanoma growth in vivo. To assess the chemotherapeutic potential of 15d-PMJ2, the current study sought to uncover molecular pathways by which 15d-PMJ2 exerts its antitumor activity. B16F10 melanoma and JWF2 squamous cell carcinoma cell lines were cultured in the presence of pharmacological agents that prevent ER or oxidative stress as well as Ca2+ channel blockers to identify mechanisms of 15d-PMJ2 cell death. Our data demonstrated the ER stress protein, PERK, was required for 15d-PMJ2-induced death. PERK activation triggered the release of ER-resident Ca2+ through an IP3R sensitive pathway. Increased calcium mobilization led to mitochondrial Ca2+ overload followed by mitochondrial permeability transition pore (mPTP) opening and the deterioration of mitochondrial respiration. Finally, we show the electrophilic double bond located within the cyclopentenone ring of 15d-PMJ2 was required for its activity. The present study identifies PERK/IP3R/mPTP signaling as a mechanism of 15d-PMJ2 antitumor activity.


Assuntos
Melanoma , Poro de Transição de Permeabilidade Mitocondrial , Humanos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Sinalização do Cálcio , Morte Celular , Apoptose , Cálcio/metabolismo , Prostaglandina D2/farmacologia
8.
J Lipid Res ; 63(12): 100310, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370807

RESUMO

Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.


Assuntos
Cisteína , Prostaglandinas , Camundongos , Humanos , Animais , Lipopolissacarídeos/metabolismo , Mastócitos , Prostaglandina-E Sintases/metabolismo , Macrófagos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Prostaglandina D2/farmacologia
9.
Food Funct ; 13(20): 10695-10709, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36172851

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease that significantly endangers human health, where metabolism may drive pathogenesis: a shift from mitochondrial oxidation to glycolysis occurs in diseased pulmonary vessels and the right ventricle. An increase in pulmonary vascular resistance in patients with heart failure with a preserved ejection fraction portends a poor prognosis. Luteolin exists in numerous foods and is marketed as a dietary supplement assisting in many disease treatments. However, little is known about the protective effect of luteolin on metabolism disorders in diseased pulmonary vessels. In this study, we found that luteolin apparently reversed the pulmonary vascular remodeling of PAH rats by inhibiting the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). Moreover, network pharmacology and metabolomics results revealed that the arachidonic acid pathway, amino acid pathway and TCA cycle were dysregulated in PAH. A total of 14 differential metabolites were significantly changed during the PAH, including DHA, PGE2, PGD2, LTB4, 12-HETE, 15-HETE, PGF2α, and 8-iso-PGF2α metabolites in the arachidonic acid pathway, and L-asparagine, oxaloacetate, N-acetyl-L-ornithine, butane diacid, ornithine, glutamic acid metabolites in amino acid and TCA pathways. However, treatment with luteolin recovered the LTB4, PGE2, PGD2, 12-HETE, 15-HETE, PGF2α and 8-iso-PGF2α levels close to normal. Meanwhile, we showed that luteolin also downregulated the gene and protein levels of COX 1, 5-LOX, 12-LOX, and 15-LOX in the arachidonic acid pathway. Collectively, this work highlighted the metabolic mechanism of luteolin-protected PAH and showed that luteolin would hold great potential in PAH prevention.


Assuntos
Hipertensão Arterial Pulmonar , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Animais , Ácido Araquidônico/metabolismo , Asparagina , Butanos/metabolismo , Butanos/farmacologia , Proliferação de Células , Dinoprosta/metabolismo , Dinoprosta/farmacologia , Dinoprostona/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Leucotrieno B4/metabolismo , Luteolina/farmacologia , Músculo Liso Vascular , Miócitos de Músculo Liso/metabolismo , Farmacologia em Rede , Ornitina/metabolismo , Oxaloacetatos/metabolismo , Oxaloacetatos/farmacologia , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Ratos
10.
Life Sci Alliance ; 5(12)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167438

RESUMO

We investigated the relevance of the prostaglandin D2 pathway in Alzheimer's disease, because prostaglandin D2 is a major prostaglandin in the brain. Thus, its contribution to Alzheimer's disease merits attention, given the known impact of the prostaglandin E2 pathway in Alzheimer's disease. We used the TgF344-AD transgenic rat model because it exhibits age-dependent and progressive Alzheimer's disease pathology. Prostaglandin D2 levels in hippocampi of TgF344-AD and wild-type littermates were significantly higher than prostaglandin E2. Prostaglandin D2 signals through DP1 and DP2 receptors. Microglial DP1 receptors were more abundant and neuronal DP2 receptors were fewer in TgF344-AD than in wild-type rats. Expression of the major brain prostaglandin D2 synthase (lipocalin-type PGDS) was the highest among 33 genes involved in the prostaglandin D2 and prostaglandin E2 pathways. We treated a subset of rats (wild-type and TgF344-AD males) with timapiprant, a potent highly selective DP2 antagonist in development for allergic inflammation treatment. Timapiprant significantly mitigated Alzheimer's disease pathology and cognitive deficits in TgF344-AD males. Thus, selective DP2 antagonists have potential as therapeutics to treat Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Dinoprostona , Modelos Animais de Doenças , Receptores de Lipopolissacarídeos , Masculino , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Prostaglandinas , Ratos , Ratos Transgênicos , Receptores Imunológicos , Receptores de Prostaglandina
11.
Stem Cell Res Ther ; 13(1): 395, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922870

RESUMO

BACKGROUND: In diabetes, delayed wound healing was considered as the result of excessive recruitment and retention of pro-inflammatory cells and factors. Hematopoietic prostaglandin D synthase (HPGDS) was identified from differently expressed genes of diabetic human foot skin. HPGDS is responsible for the production of prostaglandin D2 (PGD2), an inflammatory mediator. Therefore, we aim to explore whether HPGDS could be a therapeutic target in the diabetic wound (DW). METHOD: In this study, we compared gene expression profilings of diabetic human foot skin and non-diabetic human foot skin from the Gene Expression Omnibus database. We detected the characteristics of immune components in diabetic mice wound and investigated the role and underlying mechanism of the differently expressed Hpgds for the diabetic wound healing. For in vivo studies, we engineered ADSC to overexpress Hpgds (ADSCHpgds) and evaluated its effects on diabetic wound healing using a full-thickness skin wound model. For in vitro studies, we evaluated the role of ADSCHpgds conditioned medium and PGD2 on Lipopolysaccharide (LPS) induced macrophage. RESULTS: Hpgds was significantly down-regulated in type 2 diabetic mice wound and its deficiency delayed normal wound healing. ADSCHpgds accelerated DW healing by reducing neutrophil and CD8T cell recruitment, promoting M2 macrophage polarization and increasing the production of growth factors. ADSCHpgds conditioned medium showed superior capability in promoting M2 macrophage transition than conditioned medium derived from ADSC alone. CONCLUSION: Our results demonstrated that Hpgds is required for wound healing, and ADSCHpgds could accelerate DW healing by improving anti-inflammatory state and normalizing the proliferation phase of wound healing in mice. These findings provide a new insight in the therapeutic strategy of diabetic wound.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Animais , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Oxirredutases Intramoleculares/metabolismo , Camundongos , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Células-Tronco/metabolismo , Cicatrização/genética
12.
Dev Comp Immunol ; 136: 104498, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948178

RESUMO

Prostaglandins (PGs) are highly reactive small lipophilic molecules derived from polyunsaturated fatty acids of the cell membrane and play a key role in the resolution of inflammation processes. 15-deoxy-Δ12,14-PGJ2 (15dPGJ2) is a cyclopentenone PG (CyPG) of the J series with anti-inflammatory, anti-proliferative and pro-apoptotic effects. This CyPG can signal through: (i) the PGD2 receptor (DP2) and peroxisome proliferator-activated receptor γ (PPARγ) or (ii) by covalent binding to protein nucleophiles, such as, thiols groups of cysteine, lysine or histidine via a Michael addition reaction, modifying its structure and function. In this work we show that acidophilic granulocytes (AGs) of gilthead seabream (Sparus aurata L.), the functional equivalent to mammalian neutrophils, constitutively expressed ppara, pparb and pparg genes, the latter showing the highest expression and up-regulation when stimulated by bacterial DNA. In addition, we tested the ability of 15dPGJ2, and its biotinylated analog, as well as several PPARγ ligands, to modulate reactive oxygen species (ROS) and/or cytokines production during a Toll like receptor (TLR)-mediated granulocyte response. Thus, 15dPGJ2 was able to significantly decrease bacterial DNA-induced ROS production and transcript levels of pparg, interleukin-1ß (il1b) and prostaglandin-endoperoxide synthase 2 (ptgs2). In contrast, its biotinylated analog was less potent and a higher dose was required to elicit the same effects on ROS production and cytokine expression. In addition, different PPARγ agonists were able to mimic the effects of 15dPGJ2. Conversely, the PPARγ antagonist T007097 abolished the effect of 15dPGJ2 on DNA bacterial-induced ROS production. Surprisingly, transactivation assays revealed that both 15dPGJ2 and its biotinylated analog signaled via Pparα and Pparß, but not by Pparγ. These results were further confirmed by HPLC/MS analysis, where Pparß was identified as an interactor of biotin-15dPGJ2 in naïve and DNA-stimulated leukocytes. Taken together, our data show that 15dPGJ2 acts both through Ppar activation and covalent binding to proteins in fish granulocytes and identify for the first time in vertebrates a role for Pparα and Pparß in the resolution of inflammation mediated by 15dPGJ2.


Assuntos
PPAR beta , Dourada , Animais , Ciclo-Oxigenase 2/metabolismo , Ciclopentanos , DNA Bacteriano , Granulócitos/metabolismo , Inflamação , Mamíferos , PPAR alfa , PPAR gama/genética , PPAR gama/metabolismo , Prostaglandina D2/química , Prostaglandina D2/farmacologia , Prostaglandinas , Espécies Reativas de Oxigênio , Dourada/metabolismo
13.
Cancer Immunol Res ; 10(7): 900-916, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35612500

RESUMO

T follicular helper (Tfh) cells are a subset of CD4+ T cells essential in immunity and have a role in helping B cells produce antibodies against pathogens. However, their role during cancer progression remains unknown. The mechanism of action of Tfh cells remains elusive because contradictory data have been reported on their protumor or antitumor responses in human and murine tumors. Like Tfh cells, Th2 cells are also involved in humoral immunity and are regularly associated with tumor progression and poor prognosis, mainly through their secretion of IL4. Here, we showed that Tfh cells expressed hematopoietic prostaglandin D2 (PGD2) synthase in a pSTAT1/pSTAT3-dependent manner. Tfh cells produced PGD2, which led to recruitment of Th2 cells via the PGD2 receptor chemoattractant receptor homologous molecule expressed on Th type 2 cells (CRTH2) and increased their effector functions. This cross-talk between Tfh and Th2 cells promoted IL4-dependent tumor growth. Correlation between Th2 cells, Tfh cells, and hematopoietic PGD2 synthase was observed in different human cancers and associated with outcome. This study provides evidence that Tfh/Th2 cross-talk through PGD2 limits the antitumor effects of Tfh cells and, therefore, could serve as a therapeutic target.


Assuntos
Interleucina-4 , Prostaglandina D2 , Animais , Comunicação Celular , Humanos , Oxirredutases Intramoleculares , Lipocalinas , Camundongos , Prostaglandina D2/farmacologia
14.
Oxid Med Cell Longev ; 2022: 1571705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437456

RESUMO

The pathogenesis of cerebral ischemia-reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 µg/kg/day) at gestational days 11, 14, and 18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However, maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Isquemia Encefálica/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , Feminino , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Gravidez , Prostaglandina D2/farmacologia , Prostaglandina D2/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Transdução de Sinais
15.
Biosci Biotechnol Biochem ; 86(5): 628-634, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35266506

RESUMO

We previously reported that prostaglandin (PG)D2 and its isosteric analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), promote adipogenesis in 3T3-L1 cells during the maturation phase. Focusing on the differentiation phase, although both PGs inhibited adipogenesis, this effect was canceled out by PGI2 and PGJ2 derivatives. Thus, PGD2 and 11d-11m-PGD2 play different roles during the phases, but do not affect PGI2- and PGJ2-derivative-induced adipogenesis.


Assuntos
Adipogenia , Prostaglandina D2 , Células 3T3-L1 , Animais , Diferenciação Celular , Camundongos , Prostaglandina D2/farmacologia
16.
Neurotox Res ; 40(1): 154-172, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997457

RESUMO

Excessive production of reactive oxygen species (ROS) by NADPH oxidase (Nox) resulted in inflammation. The negative regulator of ROS (NRROS) dampens ROS generation during inflammatory responses. 15-Deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) exhibits neuroprotective effects on central nervous system (CNS). However, whether 15d-PGJ2-induced NRROS expression was unknown in rat brain astrocytes (RBA-1). NRROS expression was determined by Western blot, RT/real-time PCR, and promoter activity assays. The signaling components were investigated using pharmacological inhibitors or specific siRNAs. The interaction between transcription factors and the NRROS promoter was investigated by chromatin immunoprecipitation assay. Upregulation of NRROS on the hydrogen peroxide (H2O2)-mediated ROS generation and interleukin 6 (IL-6) secretion was measured. 15d-PGJ2-induced NRROS expression was mediated through PI3K/Akt-dependent activation of Sp1 and FoxO1 and established the essential promoter regions. We demonstrated that 15d-PGJ2 activated PI3K/Akt and following by cooperation between phosphorylated nuclear FoxO1 and Sp1 to initiate the NRROS transcription. In addition, Nrf2 played a key role in NRROS expression induced by 15d-PGJ2 which was mediated through its phosphorylation. Finally, the NRROS stable clones attenuated the H2O2-induced ROS generation and expression of IL-6 through suppressing the Nox-2 activity. These results suggested that 15d-PGJ2-induced NRROS expression is mediated through a PI3K/Akt-dependent FoxO1 and Sp1 phosphorylation, and Nrf2 cascade, which suppresses ROS generation through attenuating the p47phox phosphorylation and gp91phox formation and IL-6 expression in RBA-1 cells. These results confirmed the mechanisms underlying 15d-PGJ2-induced NRROS expression which might be a potential strategy for prevention and management of brain inflammatory and neurodegenerative diseases.


Assuntos
Astrócitos , Fator 2 Relacionado a NF-E2 , Animais , Encéfalo/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
17.
Acta Pharmacol Sin ; 43(5): 1251-1263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417577

RESUMO

Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.


Assuntos
Prostaglandina D2 , Prostaglandinas , Apoptose , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
18.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769194

RESUMO

Osteosarcoma (OS) is the most common type of bone tumor, and has limited therapy options. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has striking anti-tumor effects in various tumors. Here, we investigated molecular mechanisms that mediate anti-tumor effects of 15d-PGJ2 in different OS cell lines. Human U2-OS and Saos-2 cells were treated with 15d-PGJ2 and cell survival was measured by MTT assay. Cell proliferation and motility were investigated by scratch assay, the tumorigenic capacity by colony forming assay. Intracellular ROS was estimated by H2DCFDA. Activation of MAPKs and cytoprotective proteins was detected by immunoblotting. Apoptosis was detected by immunoblotting and Annexin V/PI staining. The ex ovo CAM model was used to study growth capability of grafted 15d-PGJ2-treated OS cells, followed by immunohistochemistry with hematoxylin/eosin and Ki-67. 15d-PGJ2 substantially decreased cell viability, colony formation and wound closure capability of OS cells. Non-malignant human osteoblast was less affected by 15d-PGJ2. 15d-PGJ2 induced rapid intracellular ROS production and time-dependent activation of MAPKs (pERK1/2, pJNK and pp38). Tempol efficiently inhibited 15d-PGJ2-induced ERK1/2 activation, while N-acetylcystein and pyrrolidine dithiocarbamate were less effective. Early but weak activation of cytoprotective proteins was overrun by induction of apoptosis. A structural analogue, 9,10-dihydro-15d-PGJ2, did not show toxic effects in OS cells. In the CAM model, we grafted OS tumors with U2-OS, Saos-2 and MG-63 cells. 15d-PGJ2 treatment resulted in significant growth inhibition, diminished tumor tissue density, and reduced tumor cell proliferation for all cell lines. Our in vitro and CAM data suggest 15d-PGJ2 as a promising natural compound to interfere with OS tumor growth.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Prostaglandina D2/análogos & derivados , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Galinhas , Ativação Enzimática/efeitos dos fármacos , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Osteossarcoma/metabolismo , Prostaglandina D2/farmacologia , Espécies Reativas de Oxigênio/metabolismo
19.
Anim Reprod Sci ; 234: 106866, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34626868

RESUMO

The current study was conducted with the aim to investigate effects of PPARγ ligands on synthesis of nuclear receptor κB (NF-κB) and selected cytokines (IL-1ß, IFNγ, TNFα, IL-4, IL-10, LIF) in the pig myometrium on days 14-15 of the estrous cycle (late-luteal phase) and days 14-15 of the gestational period (beginning of embryonic implantation). The myometrial slices were incubated in vitro for 6 h in medium containing PPARγ ligands, agonists: 15d-prostaglandin J2 or pioglitazone, and antagonist - T0070907. The mRNA transcript and protein abundances were evaluated in tissues and culture medium. During the estrous cycle, PPARγ ligands did not have an effect on the mRNA transcript abundance of the immune response mediators used for treatments. The IL-10 protein abundance in the tissue was less when there was inclusions of pioglitazone in the medium, while the treatment with T0070907 resulted in a larger abundance of NF-κB, IL-1ß (in the tissue) and IL-4 (in tissue and culture media). During the gestational period, pioglitazone or PGJ2 suppressed mRNA IFNγ and IL-10 transcript and protein abundances (in the tissue and culture media), whereas there was an enhanced NF-κB protein abundance (in the tissue). Treatment with T0070907 had diverse effects (e.g., for NFκB inhibited mRNA transcript abundance or enhanced protein abundance). The observed changes are related mainly in tissues from pregnant animals. Responses to PPARγ antagonist are indicative of the possible involvement of PPARγ-independent factors as well as ligand-independent activation of the receptor, ligand selectivity/functionality or tissue receptivity to the factors evaluated.


Assuntos
Imunidade/fisiologia , Miométrio/metabolismo , PPAR gama/metabolismo , Suínos/fisiologia , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipoglicemiantes/farmacologia , PPAR gama/genética , Pioglitazona/farmacologia , Gravidez , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Piridinas/farmacologia , Técnicas de Cultura de Tecidos
20.
Respir Res ; 22(1): 262, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620168

RESUMO

BACKGROUND: Prostaglandin D2 (PGD2) signaling via prostaglandin D2 receptor 2 (DP2) contributes to atopic and non-atopic asthma. Inhibiting DP2 has shown therapeutic benefit in certain subsets of asthma patients, improving eosinophilic airway inflammation. PGD2 metabolites prolong the inflammatory response in asthmatic patients via DP2 signaling. The role of PGD2 metabolites on eosinophil and ILC2 activity is not fully understood. METHODS: Eosinophils and ILC2s were isolated from peripheral blood of atopic asthmatic patients. Eosinophil shape change, ILC2 migration and IL-5/IL-13 cytokine secretion were measured after stimulation with seven PGD2 metabolites in presence or absence of the selective DP2 antagonist fevipiprant. RESULTS: Selected metabolites induced eosinophil shape change with similar nanomolar potencies except for 9α,11ß-PGF2. Maximal values in forward scatter of eosinophils were comparable between metabolites. ILC2s migrated dose-dependently in the presence of selected metabolites except for 9α,11ß-PGF2 with EC50 values ranging from 17.4 to 91.7 nM. Compared to PGD2, the absolute cell migration was enhanced in the presence of Δ12-PGD2, 15-deoxy-Δ12,14-PGD2, PGJ2, Δ12-PGJ2 and 15-deoxy-Δ12,14-PGJ2. ILC2 cytokine production was dose dependent as well but with an average sixfold reduced potency compared to cell migration (IL-5 range 108.1 to 526.9 nM, IL-13 range: 125.2 to 788.3 nM). Compared to PGD2, the absolute cytokine secretion was reduced in the presence of most metabolites. Fevipiprant dose-dependently inhibited eosinophil shape change, ILC2 migration and ILC2 cytokine secretion with (sub)-nanomolar potencies. CONCLUSION: Prostaglandin D2 metabolites initiate ILC2 migration and IL-5 and IL-13 cytokine secretion in a DP2 dependent manner. Our data indicate that metabolites may be important for in vivo eosinophil activation and ILC2 migration and to a lesser extent for ILC2 cytokine secretion.


Assuntos
Asma/tratamento farmacológico , Eosinófilos/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Prostaglandina D2/farmacologia , Receptores Imunológicos/agonistas , Receptores de Prostaglandina/agonistas , Adolescente , Adulto , Idoso , Asma/imunologia , Asma/metabolismo , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Eosinófilos/imunologia , Eosinófilos/metabolismo , Feminino , Humanos , Ácidos Indolacéticos/farmacologia , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Antagonistas de Prostaglandina/farmacologia , Prostaglandina D2/análogos & derivados , Piridinas/farmacologia , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...